Wednesday, April 28, 2010

Measuring Performance

IC, information coefficient - A correlation value that measures the relatinoship between a variable's predicted & actual values, used for evaluating forecasting skill.

In our active quant strategies, an IR of .10 in considered excellent. An IR of .05 would be considered good.


IR, information ratio - A measure of the risk-adjusted return of a financial security (or asset or portfolio), defined as expected active return divided by tracking error. Top-quartile investment managers typically achieve information ratios of about one-half.


tracking error - the standard deviation of the active return

Sunday, April 11, 2010

Why we use log returns

Log Returns

If $100 grows to $120, what is the single period return?
Discretely... +20% because 120/100-1 = 20%
Continuously... log return is given by LN(P1/P0) or ~18.2%. (If the asset paid dividends, they are included in the numerator).

Period log returns are typically used in quantitative finance

Benefits of log return
* Time additive: Note that the two-period log return is identical to the sum of the each period’s log return. To get the n-period log return, we can simply add the consecutive single period log returns. Conversely, notice the simple return is not time additive.
* Mathematically convenient: logs and exponents are easier to manipulate with calculus. Theoretical models tend to assume, unrealistically but conveniently, continuously compounded rates of return. For example, if LogReturn = LN(P1/P0), then EXP[LogReturn] = P1/P0. If f(y) = EXP[LogReturn] then the first derivative, f’(y) is quite wonderfully also EXP[LogReturn]. In short, d/dx EXP[x] = EXP[x].
* Approximately good: for short periods (e.g., daily), the log return approximates the discrete return anyway

Drawbacks of log return
* Not "linear" in portfolio return: We would like to be able to say that portfolio return is a weighted sum of components (assets). However, we cannot say this under log returns: the log return is not linearly additive across portfolio components. But, the discrete return is linearly additive.
* Unrealistic: Markets tend to quote discrete returns

Followers